
ST2302/MA8002 Exercises chapter 2 and 3

Exercise 2.1
Assume the stochastic growth rate r(t) has expectation r and variance σ2

r . First,
consider the expectation of ∆N , given by

E[∆N ] = r N

(
1− N

K

)
This is equivalent to the deterministic version of the logistic model, hence it
seems reasonable. The variance of ∆N is given by

Var(∆N) = N2

(
1− N

K

)2

σ2
r

This variance depends on N . Figure 1 shows how it changes with N , for K = 70
and σ2

r = 0.1. It does not seem realistic that the variance should decline as
N → K.

Exercise 2.4
The theta-logistic model is given by

r(N) =

{
r1

(
1− Nθ−1

Kθ−1

)
, θ 6= 0

r1

(
1− ln N

ln K

)
, θ = 0

In order to verify the different cases, we will insert the different values of θ in
this model.

1. First, consider the case where θ = −1.

r(N) = r1

(
1−

1
N − 1
1
K − 1

)
= r1

(
1−

K
N −K

1−K

)

= r1

(
1−K − K

N + K

1−K

)

= r1

(
1− K

N

1−K

)
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Figure 1: From exercise 2.1. How the variance in ∆N changes with N , for K = 70
(dashed line) and σ2

r = 0.1.

r(N) = ∆ lnN ≈ ∆N

N

∆N ≈ r1 N

(
1− K

N

1−K

)

= r1

(
N −K

1−K

)

Hence, in this case ∆N is a linear function of N .

2. For the case of θ = 0, we use l’Hôpital’s rule to find the limit as θ → 0:

r(N) = lim
θ→0

r1

(
1− Nθ − 1

Kθ − 1

)
= lim

θ→0
r1

(
1− Nθ lnN

Kθ lnK

)
= r1

(
1− lnN

lnK

)
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This is Gompertz’ type of density regulation, where ∆ lnN is a linear
function of lnN .

3. For the case of θ = 1 we obtain

r(N) = r1

(
1− N − 1

K − 1

)
= r0

(
1− 1

K

) (
1− N − 1

K − 1

)
= r0

(
1− 1

K
− N − 1

K − 1
+

1
K

N − 1
K − 1

)
= r0

(
1− K − 1 + KN −K −N + 1

K(K − 1)

)
= r0

(
1− N(K − 1)

K(K − 1)

)
= r0

(
1− N

K

)

This is the logistic model.

4. The limit as θ →∞ (assuming N < K) is given by

lim
θ→∞

r(N) = lim
θ→∞

r1

(
1− Nθ − 1

Kθ − 1

)
= lim

θ→∞
r1

(
1−

1
Kθ−1

1
Nθ−1

)
= r1

For θ →∞ even a small increase in N above K would produce a growth
rate r(N) → −∞. This is the "roof"-model, where the population grows
exponentially until K, but never grow past this limit.

Exercise 3.1
From chapter 1 we know that the process Xt|X0 is approximately normally
distributed:

Xt|X0 ∼ N(X0 + st, σ2
st)

s ≈ r − 1
2

σ2
e −

1
2n

σ2
d

σ2
s ≈ σ2

e +
σ2

d

n
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Hence, the infinitesimal mean and variance are given by

µX(x) = E[∆X|Xt] = r − 1
2

σ2
e −

1
2ex

σ2
d

νX(x) = Var(∆X|Xt) = σ2
e +

σ2
d

ex

Exercise 3.2

µX(x∗) = 0

r − 1
2

σ2
e −

1
2ex∗

σ2
d = 0

1
2ex∗

σ2
d = r − 1

2
σ2

e

ex∗ = n∗ =
σ2

d

2r − σ2
e

x∗ = ln
(

σ2
d

2r − σ2
e

)

Exercise 3.3
Here, we use the transformation formulas for diffusion processes, with Xt =
g(Nt) = lnNt, giving

µX(x) = g′(n)µ(n) +
1
2
g′′(n)ν(n)

=
1
n

r1n

(
1− lnn

lnK

)
− 1

2n2
σ2

en2

= r1

(
1− lnn

lnK

)
− 1

2
σ2

e

= r1 −
1
2

σ2
e −

r1

lnK
x

νX(x) = g′(n)2ν(n)

=
1
n2

σ2
en2

= σ2
e .

For the OU-process the infinitesimal mean and variance are given by

µX(x) = α− β x

νX(x) = σ2
e

Hence, with α = r1 − σ2
e/2 and β = r1/ lnK we see that Xt is an OU-process.
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Exercise 3.4
We use the transformation formula for diffusion processes, with Xt = g(Nt) =
Nθ

t , giving

µX(x) = g′(n)µ(n) +
1
2
g′′(n)ν(n)

= θnθ−1rn

(
1− nθ

Kθ

)
+

1
2

θ(θ − 1)nθ−2 σ2
en2

= θrnθ − θrn2θ

Kθ
+

1
2

θ(θ − 1)nθ σ2
e

= θx

(
r
[
1− x

Kθ

]
+

1
2

(θ − 1) σ2
e

)

νX(x) = g′(n)2ν(n)

= θ2n2θ−2 σ2
en2

= θ2x2 σ2
e

Exercise 3.5
Using the transformation formula for diffusion processes, with Xt = g(Nt) =
N−θ

t , we obtain

Xt = g(Nt) = N−θ
t

µX(x) = g′(n)µ(n) +
1
2
g′′(n)ν(n)

= −θn−θ−1rn

(
1− nθ

Kθ

)
+

1
2

θ(−θ − 1)n−θ−2 σ2
en2

= −θn−θr +
rθ

Kθ
− 1

2
θ(θ + 1)n−θ σ2

e

=
rθ

Kθ
−
(

rθ − 1
2
θ(θ + 1)σ2

e

)
x

Hence, µX(x) is the infinitesimal mean of an OU-process in the form µX(x) =
α− βx.

Exercise 3.6
In order to obtain a constant infinitesimal variance νX(x) = 1 we use the isotrofic
scale transformation given by
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g(n) =
∫ n

a

1√
νN (z)

dz

=
∫ n

a

1
σd
√

z
dz

=
2
σd

[√
n−

√
a
]

We choose a = 0, giving

g(n) =
2
√

n

σd

Exercise 3.12
The browian motion, which is the process of X = lnN , is defined by

µ(x) = s

ν(x) = σ2
e

Choosing a = 0 as lower integration limit, s(x) is given by

s(x) = exp
(
−2

∫ x

0

µ(z)
ν(z)

d z

)
= exp

(
−2

∫ x

0

s

σ2
e

d z

)
= exp

(
− 2s

σ2
e

x

)

Using this, S(x) is given by

S(x) =
∫ x

0

s(z)d z

=
∫ x

0

exp
(
− 2s

σ2
e

z

)
d z

=

{
σ2

e

2s

(
1− exp

(
− 2s

σ2
e

x
))

s 6= 0
x s = 0
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In order to find u(x0), we evaluate S(a), S(b) and S(x0) for a = 0 and b →∞,
and consider the different cases s > 0, s < 0, and s = 0.

S(0) = 0 ∀s

lim
b→∞

S(b) =


−∞ s < 0
σ2

e

2s s > 0
∞ s = 0

S(x0) =

{
σ2

e

2s

(
1− exp

(
− 2s

σ2
e

x0

))
s 6= 0

x s = 0

This gives

u(x0) =
S(x0)
S(b)

=

{
0 s ≤ 0
1− exp

(
− 2s

σ2
e

x0

)
s > 0

Exercise 3.15
The expression G(x, x0)∆x represents the expected time the population process
will spend in a small interval (x, x + ∆x), before it is absorbed at a or b (see
figure 2).

Figure 2: Illustration of how much time the process Xt spends in an interval
(x, x + ∆x).
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Let Tx = G(x, x0)∆x. In the interval (x, x+∆x) the value of the function h(Xt)
will be approximately a constant h(x) as ∆x becomes small. Then E

[∫ T

0
h(Xt) dt

]
will become equal to Txh(x) in the interval (x, x + ∆x). In order to find the ex-
pectation of all x we summarize over all possible intervals between a and b.
Letting ∆x → 0 we obtain the integral.

Exercise 3.19
Firstly, we have

Pr(Nt > n) = Pr(lnNt > lnn) = Pr(Xt > x)

hence we may study Xt = lnNt instead of N . Let Xt and X∗
t the processes

without and with a barrier, respectively. Then Xt is normally distributed with
expectation x0 + st and variance σ2

et, and

Pr(X > x) = 1− Φ
(

x− x0 − st

σe

√
t

)

For the process with barrier we have (from exercise 3.18)

Pr(X∗
t > x) = 1− Φ

(
x− x0 − st

σe

√
t

)
− exp

(
−2x0s

σ2
e

)
Φ
(

st− x− x0

σe

√
t

)

Hence, the probability is lower if the extinction barrier is N = 1 (X = 0). The
difference between the two probabilities is given by

Pr(X > x)− Pr(X∗
t > x) = exp

(
−2x0s

σ2
e

)
Φ
(

st− x− x0

σe

√
t

)
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