ST2302/MAS002 Exercises chapter 2 and 3

Exercise 2.1

Assume the stochastic growth rate r(¢) has expectation r and variance o2. First,
consider the expectation of AN, given by

E[AN] =rN <1 - g)

This is equivalent to the deterministic version of the logistic model, hence it
seems reasonable. The variance of AN is given by

2

Var(AN) = N? <1 - g) o?

T

This variance depends on N. Figure 1 shows how it changes with N, for K = 70
and 02 = 0.1. It does not seem realistic that the variance should decline as
N — K.

Exercise 2.4
The theta-logistic model is given by

Tl(l—lnlj\(]) ,020

In

In order to verify the different cases, we will insert the different values of 6 in
this model.

1. First, consider the case where § = —1.
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Figure 1: From exercise 2.1. How the variance in AN changes with N, for K = 70
(dashed line) and o2 = 0.1.

AN

1- &
AN ~r; N N

 (N-K
“NA\1-K

Hence, in this case AN is a linear function of V.

2. For the case of § = 0, we use 'Hopital’s rule to find the limit as § — 0:

. N —1 . Nlln N In N
r(N) = Jim (1— K9—1> = m (1‘ m) =n (1‘ an>



This is Gompertz’ type of density regulation, where Aln N is a linear
function of In V.

3. For the case of § = 1 we obtain

r(N) = (1 - I]\{“D
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This is the logistic model.

4. The limit as 0 — oo (assuming N < K) is given by

N —1
lim r(N) = lim ry (1 - )

06— o0 0—o0 K9 -1
1
= hm T1 <1 — K91_1>
60— o0 N1
= 7"1

For 6§ — oo even a small increase in N above K would produce a growth
rate r(IN) — —oo. This is the "roof"-model, where the population grows
exponentially until K, but never grow past this limit.

Exercise 3.1

From chapter 1 we know that the process X:| Xy is approximately normally
distributed:

X¢| Xo ~ N(Xq + st, 0%t)
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Hence, the infinitesimal mean and variance are given by

1 1
ux(x) =E[AX|X ] =71 — 503 - @03
o

vx(x) = Var(AX|X;) = 02 + -

Exercise 3.2
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Exercise 3.3

Here, we use the transformation formulas for diffusion processes, with X; =
g(Ny) = 1In Ny, giving

1
px(x) = g'(n)u(n) + 59"(%)1/(71)
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vx(z) = g'(n)*v(n)
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For the OU-process the infinitesimal mean and variance are given by

nx(@) = a - Ba

vx(z) = o?

Hence, with a = r; —02/2 and 3 = r;/In K we see that X; is an OU-process.



Exercise 3.4
We use the transformation formula for diffusion processes, with X; = g(INV;) =
N?, giving
!/ 1 1!
px (@) = g'(n)u(n) + 59" (n)r(n)

0
1
= On?1r (1 - IZQ) B 9(0 — 1)n=2 o2n?

20
:eme_ﬁgg + o 9(9 nf o

(h;(r[ Ay )

vx(z) = g'(n)*v(n)

— 02n2972 O'z’I’LQ

_ 6222 52

Exercise 3.5

Using the transformation formula for diffusion processes, with X; = g(N;) =
N{e, we obtain

Xi = g(Ny) = N °
ux (@) = ¢ (W)(n) + 2¢" (n)v(n)

2
0 1

= —On 1y (1 - ;0) + 3 0(—60 — 1)n= 72 52n?

— +% - 79(9+1)n_9

= [7;—99 - <7"9 - 50(9 + 1)03) x

Hence, px(x) is the infinitesimal mean of an OU-process in the form px(z) =
o — Bx.
Exercise 3.6

In order to obtain a constant infinitesimal variance vx (x) = 1 we use the isotrofic
scale transformation given by



2
= — [Vn -4
o
We choose a = 0, giving
24/n
o(m) = 2

Exercise 3.12

The browian motion, which is the process of X = 1In N, is defined by

Choosing a = 0 as lower integration limit, s(x) is given by

s(z) = exp (—2 /Or VE?dz)
— exp (—2 /Ow;gdz>

:{ ;—g(l—exp<—3—§x>) s#0
T

S =



In order to find u(z), we evaluate S(a), S(b) and S(xg) for a = 0 and b — oo,
and consider the different cases s > 0, s < 0, and s = 0.

S(0)= 0 Vs
—00 §<0
blirgo S)=4¢ 2= s>0
%) s=0
7 (1_ _2s
S(wo) = { 5% (1 exp( o2 a?o)) s#0
x s =
This gives
S(l‘o)
u(xo) ()

Exercise 3.15

The expression G(x, zo)Ax represents the expected time the population process
will spend in a small interval (z,z 4+ Ax), before it is absorbed at a or b (see

figure 2).
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Figure 2: Tllustration of how much time the process X; spends in an interval
(z,z + Azx).



Let T, = G(x,z9)Ax. In the interval (z, z+ Az) the value of the function h(X;)
will be approximately a constant h(z) as Az becomes small. Then E [ fOT h(X¢) dt}

will become equal to T, h(z) in the interval (z,z + Az). In order to find the ex-
pectation of all x we summarize over all possible intervals between a and b.
Letting Az — 0 we obtain the integral.

Exercise 3.19

Firstly, we have

Pr(Ny >n)=Pr(InN; >1Inn) = Pr(X; > z)

hence we may study X; = In N, instead of N. Let X; and X/ the processes
without and with a barrier, respectively. Then X; is normally distributed with
expectation xg + st and variance o>t, and

T — Ty — St
PriX>z)=1—-®( —————
( ) ( ooVt )

For the process with barrier we have (from exercise 3.18)

T —xy— St 208 st—x — xg
PrX;>2)=1-®| ———— | —exp| — (0]
= (™) e (5 o (0

Hence, the probability is lower if the extinction barrier is N =1 (X = 0). The
difference between the two probabilities is given by

2208 st:z:xo)
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